Problem 9B,1

Suppose ν is a real measure on a measurable space (X, S). Prove that the Hahn decomposition is almost unique in the sense that if A, B and A^{\prime}, B^{\prime} both satisfies the condition in Hahn decomposition, then

$$
|\nu|\left(A-A^{\prime}\right)=|\nu|\left(A^{\prime}-A\right)=|\nu|\left(B-B^{\prime}\right)=|\nu|\left(B^{\prime}-B\right)=0
$$

Proof. We only prove that $|\nu|\left(A-A^{\prime}\right)=0$. In fact, for any subset $E \subset A-A^{\prime}, \nu(E)$ should be both nonpositive and nonnegative as a subset of B^{\prime}, A. So $\nu(E)=0$. Then the result follows.

Problem 9B,2

Suppose ν is a positive measure and $g, h \in L^{1}(d \nu)$. Prove that $g d \mu \perp h d \mu$ if and only if $g(x) h(x)=0$.
Proof. By definition, we can check that the support of measure $f d \mu$ is $\{x \mid f(x) \neq 0\}$. Then the result follows easiliy.

Problem 9B,11

Suppose μ is a positive measure on a measurable space (X, S) and ν is a real measure. Show that $\nu \ll \mu$ if and only if $\nu^{+} \ll \mu$ and $\nu^{-} \ll \mu$.

Proof. Obviously by definition if $\nu^{+} \ll \mu$ and $\nu^{-} \ll \mu$, then $\nu \ll \mu$. Conversely, if $\nu \ll \mu$, let $\nu=\nu^{+}-\nu^{-}$ be its decomposition and A, B be the corresponding support set. For any set E such that $\mu(E)=0$. Then $\mu(E \bigcap A)=\mu(E \bigcap B)=0$. Then $\nu^{+}(E)=\nu(E \bigcap A)=0$ and similarly for ν^{-}. This shows the result.

Problem 9B,13

Give an example to show that Radon-Nikodym theorem can fail if the σ-finite hypothesis is eliminated.
Proof. Let $X=[0,1], S=\mathcal{B}_{[0,1]}$, and let m be the Lebesgue measure and μ be the counting measure. Then obviously $m \ll \mu$. But if there exists f such that $d m=f d \mu$, then obviouly $f \geq 0$. Take single point as the test sets and we know that f must be zero function, which is an obviously contradiction. Note we can easily check that counting measure does not satisfy the σ - finite condition.

Problem 10A,3

Suppose V, W are Hilbert space and $g \in V, h \in W$. Define $T \in B(V, W)$ by $T f=<f, g>h$. Find a formula for T^{*}.

Proof.

$$
<T f, k>=<f, g><h, k>=<f,<k, h>g>=<f, T^{*} k>
$$

thus $T^{*} k=<k, h>g$.

Problem 10A,9

Suppose b_{1}, b_{2}, \ldots is abounded sequence in \mathbb{F}. Define a bounde linear map $T: l^{2} \rightarrow l^{2}$ by

$$
T\left(a_{1}, a_{2}, \ldots\right)=\left(a_{1} b_{1}, a_{2} b_{2}, \ldots\right)
$$

- Find a formula for T^{*}.
- show that T is injective if and only if $b_{k} \neq 0$ for every positive integer k.
- show that T has dense range if and only if $b_{k} \neq 0$ for every positive integer k.
- Show that T has closed tange if and only if

$$
\inf \left\{\left|b_{k}\right|: k \in Z^{+} \text {and } b_{k} \neq 0\right\}>0
$$

- Show that T is invertible if and only if

$$
\inf \left\{\left|b_{k}\right|: k \in Z^{+}\right\}>0
$$

Proof. - It is easy to check that $T^{*}\left(a_{1}, a_{2}, \ldots\right)=\left(\overline{b_{1}} a_{1}, \overline{b_{2}} a_{2}, \ldots\right)$.

- It is easy to check.
- If there exists k_{0} such that $b_{k_{0}}=0$, then $e_{k_{0}}$ is not on the closure of range of T, where $e_{k_{0}}$ only have k_{0}-th entry nonzero and the value is 1 . The converse is direct.
- If $\inf \left\{\left|b_{k}\right|: k \in Z^{+}\right.$and $\left.b_{k} \neq 0\right\}>0$, without loss of generality we can assume all b_{k} is non-zero since we only care about image. Then with the assumption we can check range of T is the whole l^{2}, which is obviously closed. Conversely, if there exist a sequence positive integer k_{j} going to infinity such that $\lim _{j \rightarrow \infty} b_{k_{j}}=0$ and $b_{k_{j}}>0$, up tp a subsequence we also assume that $\sum_{j=1}^{\infty} b_{k_{j}}^{2}<\infty$. Then consider $c_{l}=T\left(\sum_{j=1}^{l} e_{k_{j}}\right)$. So c_{l} converge to some c in l^{2}. In fact, $c=\left(c_{k}\right), c_{k}=0$ if $k \notin\left\{k_{j}\right\}, c_{k}=b_{k_{j}}$ if $k=k_{j}$. c is on the closure of range of T but has no preimage in l^{2}.
- The argument is almost the same as in the forth question.

Problem 10A,10

Suppose $h \in L^{\infty}(\mathbb{R})$ and $M_{h}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is the bounded operator definied by $M_{h}(f)=f h$.

- Show that M_{h} is injective if and only if $|\{x: h(x)=0\}|=0$.
- Find a necessary and sufficient condition for M_{h} to have dense range.
- Find a necessary and sufficient condition for M_{h} to have closed range.
- Find a necessary and sufficient condition for M_{h} to be invertible

Proof. This problem is the continuous version of the previous problem so I will not provide detail proof since their proof is very similar.

- This is obvious by definition.
- The condition is $|\{x: h(x)=0\}|=0$. The necessary part is easy. For the sufficient part, consider the set $A_{k}=\left\{x:|h(x)|>\frac{1}{k}\right\}$. Then by assumption $f \chi_{A_{k}}$ converge in L^{2} to f and the former one lies in the range of M_{h}.
- The condition is $\inf \{|h(x)| h(x) \neq 0\}>0$. The sufficient part is easy. For the necessary part, we assume $\inf \{|h(x)| h(x) \neq 0\}=0$. Let $B_{k}=\left\{x:|h(x)| \in\left(\frac{1}{k+1}, \frac{1}{k}\right]\right\}$. Then up to a subsequence, we assume $\left|B_{k}\right|>0$ for all k. Choose $b_{k}>0$ such that $\sum_{k=1}^{\infty} k^{2} b_{k}^{2}\left|B_{k}\right|=\infty, \sum_{k=1}^{\infty} b_{k}^{2}\left|B_{k}\right|<\infty$. Then consider the sequence of function $f_{j}(x)=\sum_{k=1}^{j} b_{k} \chi_{B_{k}}$ and the same argument as in the previous problem gives the result.
- The condition is $\inf \{|h(x)| h(x) \neq 0\}>0$ and $|\{x: h(x)=0\}|=0$. The argument is the same as before.

